I am a formula and live here.
\[ e^{i\pi} +1 = 0 \]
You will need to prove this identity at the exam.
Additionally you'll be asked the following definitions:
Manhattan Metric: Let \(p=(p_1,p_2,...,p_n) \in \mathbb{R}^n\) and \(q=(q_1,q_2,...,q_n) \in \mathbb{R}^n\). The Manhattan- or Taxicab-Metric \(d_1\) is defined by:
\[ d_1(p,q):=\sum_{i=1}^n|p_i-q_i|\]
Neighbourhood: Let \(N = (x_1, x_2, . . . , x_n)\) be a vector of \(n\) distinct elements of \(\mathbb{Z}^d\) . Then the neighbours of a cell at location \(x \in \mathbb{Z}^d\) are the \(n\) cells at locations \(x + x_i\) for \(i = 1, 2, . . . , n.\)
Chebyshev-Metric: Let \(p=(p_1,p_2,...,p_n) \in \mathbb{R}^n\) and \(q=(q_1,q_2,...,q_n) \in \mathbb{R}^n\). The Chebyshev-Metric \(d_{Chebyshev}\) is defined by:
\[ d_{Chebyshev}(p,q):=\max_i(|p_i - q_i|)\]
Moore-Neighbourhood: Let \(p \in \mathbb{Z}^d.\) The Moore-Neighbourhood of range \(r\) of \(p\) is \(p\) itself and all cells \(q_i\) for which
\[ d_{Chebyshev}(p,q_i)\le r\]
Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua.
Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.